Please see arXiv prints (This is latest):
https://arxiv.org/search/cond-mat?searchtype=author&query=Kuno%2C+Y
Google scholar:
https://scholar.google.com/citations?user=PTAklukAAAAJ&hl=ja
Research map(Officially):
https://researchmap.jp/-yk_kuno
Preprint(This may be old...)
3. Emergence symmetry protected topological phase in spatially tuned measurement-only circuit
Yoshihito Kuno, Ikuo Ichinose
https://arxiv.org/abs/2212.13142 (2022).
2. Topological pump of SU(Q) quantum chain and Diophantine equation
Yasuhiro Hatsugai, Yoshihito Kuno
https://arxiv.org/abs/2210.11646 (2022)
1. Critical and many-body localized phases under disorders with power-law correlations
Takahiro Orito*, Yoshihito Kuno*, Ikuo Ichinose, *equally contribution
https://arxiv.org/abs/2002.12575 (2020).
<Peer-reviewed paper>
49. Purification and scrambling in a chaotic Hamiltonian dynamics with measurements
Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose
https://arxiv.org/abs/2209.08897
Accepted in Phys. Rev. B (2022)
48. Quantum information spreading in random spin chains with topological order
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. B 106 104204 (2022)
https://doi.org/10.1103/PhysRevB.106.104204
https://arxiv.org/abs/2205.03008
47. Information spreading and scrambling in disorder-free multiple-spin interacting models
Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose
Phys. Rev. A 106, 012435 (2022)
https://doi.org/10.1103/PhysRevA.106.012435
https://arxiv.org/abs/2203.16307 (2022)
46. Localization and slow-thermalization in a cluster spin model
Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose
New J. Phys. 24 073019 (2022)
https://iopscience.iop.org/article/10.1088/1367-2630/ac7d01
https://arxiv.org/abs/2110.05970
45. Observation of bulk-edge correspondence in topological pumping based on a tunable electric circuit"
Kenichi Yatsugi, Tsuneya Yoshida, Tomonari Mizoguchi, Yoshihito Kuno, Hideo Iizuka, Yukihiro Tadokoro, and Yasuhiro Hatsugai
Commun. Phys. 5, 180 (2022).
https://www.nature.com/articles/s42005-022-00957-5
44. Deformation of localized states and state transitions in interacting random-hopping fermions
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. B 105, 094201 (2022)
https://doi.org/10.1103/PhysRevB.105.094201
https://arxiv.org/abs/2110.14410
43. Construction of interacting flat-band models by molecular-orbital representation: Correlation functions, energy gap, and entanglement
Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai
Progress of Theoretical and Experimental Physics 2022 2 (2022).
https://doi.org/10.1093/ptep/ptac015
42. Bulk-edge Correspondence in the Adiabatic Heuristic Principle
Koji Kudo, Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. B (Letter) 104 L241113 (2021)
https://arxiv.org/abs/2106.10459 (2021)
41. Topological pump and bulk-edge-correspondence in an extended Bose-Hubbard model
Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. B 104, 125146 (2021)
https://doi.org/10.1103/PhysRevB.104.125146
https://arxiv.org/abs/2107.09498 (2021)
40. Interplay and competition between disorder and flat band in an interacting Creutz ladder
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. B 104, 094202 (2021)
DOI:https://doi.org/10.1103/PhysRevB.104.094202
https://arxiv.org/abs/2106.15385 (2021)
39. Multiple quantum scar states and emergent slow-thermalization in the flat-band system
Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai
Phys. Rev. B 104, 085130 (2021)
https://doi.org/10.1103/PhysRevB.104.085130
https://arxiv.org/abs/2105.00926 (2021)
38. Flat band, spin-1 Dirac cone, and Hofstadter diagram in the fermionic square kagome model
Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai
Phys. Rev. B 104, 035161 (2021)
https://doi.org/10.1103/PhysRevB.104.035161
37. Plateau Transitions of Spin Pump and Bulk-Edge Correspondence
Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. B 104, 045113 (2021)
https://doi.org/10.1103/PhysRevB.104.045113
https://arxiv.org/abs/2102.09325 (2021)
36. Square-root topological phase with time-reversal and particle-hole symmetry
Tsuneya Yoshida, Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai
Phys. Rev. B 103, 235130 (2021)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.235130
35. Flat-band full localization and symmetry-protected topological phase on bilayer lattice systems
Ikuo Ichinose, Takahiro Orito, Yoshihito Kuno
Phys. Rev. B 103, 184113 (2021)
URL: https://link.aps.org/doi/10.1103/PhysRevB.103.184113
DOI: 10.1103/PhysRevB.103.184113
https://arxiv.org/abs/2102.10986 (2021)
34. Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms
Shuta Nakajima, Nobuyuki Takei, Keita Sakuma, Yoshihito Kuno, Pasquale Marra, Yoshiro Takahashi
Nature Physics (2021).
https://doi.org/10.1038/s41567-021-01229-9
33. Non-thermalized Dynamics of Flat-Band Many-Body Localization
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. B 103, L060301 (Letter) (2021)
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.L060301
https://arxiv.org/abs/2012.13659 (2020)
32. Detecting Bulk Topology of Quadrupolar Phase from Quench Dynamics
Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. Lett. 126, 016802 (2021)
https://doi.org/10.1103/PhysRevLett.126.016802
https://arxiv.org/abs/2008.01924 (2020)
31. Flat Band Quantum Scar
Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai
Phys. Rev. B 102, 241115 (R) (2020).
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.241115
https://arxiv.org/abs/2010.02044 (2020)
30. Interaction induced doublons and embedded topological subspace in a complete flat-band system
Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai
Phys. Rev. A 102, 063325 (2020).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.063325
https://arxiv.org/abs/2009.08134 (2020)
29. Interaction Induced Topological Charge Pump
Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. Research 2, 042024 (Rapid Communication) (2020)
https://doi.org/10.1103/PhysRevResearch.2.042024
https://arxiv.org/abs/2007.11215 (2020)
28. PT-symmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation
Yosuke Takasu, Tomoya Yagami, Yuto Ashida, Ryusuke Hamazaki, Yoshihito Kuno, Yoshiro Takahashi
Progress of Theoretical and Experimental Physics/ptaa094 (2020).
https://doi.org/10.1093/ptep/ptaa094
https://arxiv.org/abs/2004.05734
27. Square-root higher-order topological insulator on a decorated honeycomb lattice
Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. A 102, 033527 (2020).
https://doi.org/10.1103/PhysRevA.102.033527
https://arxiv.org/abs/2004.03235
26. Exact projector Hamiltonian, local integrals of motion, and many-body localization with topological order
Takahiro Orito*, Yoshihito Kuno*, Ikuo Ichinose, *equally contribution
Phys. Rev. B 101, 224308 (2020).
https://link.aps.org/doi/10.1103/PhysRevB.101.224308
https://arxiv.org/abs/2004.07634 (2020).
25. Extended flat-bands, entanglement and topological properties in a Creutz ladder,
Yoshihito Kuno
Phys. Rev. B 101, 184112 (2020).
https://doi.org/10.1103/PhysRevB.101.184112
https://arxiv.org/abs/2001.10813 (2020).
24. Flat-band many-body localization and ergodicity breaking in the Creutz ladder
Yoshihito Kuno*, Takahiro Orito*, Ikuo Ichinose, *equally contribution
New J. Phys. 22 013032 (2020).
https://doi.org/10.1088/1367-2630/ab6352
https://arxiv.org/abs/1904.03463 (2019)
23. Topological order vs. many-body localization in periodically modulated spin chains
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose
https://arxiv.org/abs/1909.13457
Phys. Rev. B 100, 214202 (2019)
https://doi.org/10.1103/PhysRevB.100.214202
22. Many-body-localization induced protection of symmetry-protected topological order in a XXZ spin model
Yoshihito Kuno
https://arxiv.org/abs/1908.00297 (2019)
Phys. Rev. Research 1, 032026 Rapid Communication
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.032026
21. Disorder-induced Chern insulator in Harper-Hofstadter-Hatsugai model
Yoshihito Kuno
Phys. Rev. B 100, 054108 (2019).
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.054108
20. Non-adiabatic extension of the Zak phase and charge pumping in the Rice-Mele model
Yoshihito Kuno
Eur. Phys. J. B (2019) 92: 195
https://doi.org/10.1140/epjb/e2019-100131-1
19. Glassy Dynamics from Quark Confinement: Atomic Quantum Simulation of Gauge-Higgs Model on Lattice
Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. A 100, 013629 (2019)
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.013629
https://arxiv.org/abs/1903.07297
18. Phase structure of the interacting Su-Schrieffer-Heeger model and the relationship with the Gross-Neveu model on lattice
Yoshihito Kuno
Phys. Rev. B 99, 064105 (2019).
https://link.aps.org/doi/10.1103/PhysRevB.99.064105
DOI: 10.1103/PhysRevB.99.064105
https://arxiv.org/abs/1811.01487
17. Out-of-equilibrium dynamics of multiple second-order quantum phase transitions in extended Bose-Hubbard model: Superfluid, supersolid and density wave
Keita Shimizu, Takahiro Hirano, Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose
Phys. Rev. A 98, 063603 (2018), (Selected in Physical Review A Kaleidoscope)
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.063603
https://arxiv.org/abs/1805.05042 (2018)
16. Dynamics of first-order quantum phase transitions in extended Bose-Hubbard model: From density wave to superfluid and vice-versa
Keita Shimizu, Takahiro Hirano, Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose,
New J. Phys. 20 083006 (2018)
http://iopscience.iop.org/article/10.1088/1367-2630/aad5f9/meta
https://arxiv.org/abs/1803.02548 (2018)
15. Generalized lattice Wilson-Dirac fermions in (1+1) dimensions for atomic quantum simulation and topological phases
Yoshihito Kuno, Ikuo Ichinose, Yoshiro Takahashi
Scientific Reports 8, 10699 (2018)
https://www.nature.com/articles/s41598-018-29143-w
https://arxiv.org/abs/1801.00439
14. Dynamics of a quantum phase transition in the Bose-Hubbard model: Kibble-Zurek mechanism and beyond
Keita Shimizu, Yoshihito Kuno, Takahiro Hirano, Ikuo Ichinose
Phys. Rev. A 97, 033626 (2018),(Selected in Physical Review A Kaleidoscope)
13. Various Topological Mott insulators in strongly-interacting boson system in one-dimensional superlattice
Yoshihito Kuno, Keita Shimizu, Ikuo Ichinose
New J. Phys.19 123025 (2017).
12. Quantum simulation of (1+1) -dimensional U(1) gauge-Higgs model on a lattice by cold Bose gases
Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, Tetsuo Matsui
Phys. Rev. D 95 ( 9 ) 094507 (2017). (Selected in Physical Review D Kaleidoscope)
11. Phase diagrams of extended Bose-Hubbard model in one dimension by Monte-Carlo simulation with stochastic-series expansion
Keima Kawaki, Yoshihito Kuno, Ikuo Ichinose,
Phys. Rev. B 95, 195101 (2017).
https://arxiv.org/abs/1701.00613
10. Bosonic Analogs of Fractional Quantum Hall State in the Vicinity of Mott States,
Yoshihito Kuno, Keita Shimizu, Ikuo Ichinose,
Phys. Rev. A 95, 013607(1) - 013607(13) (2017).
9. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model
Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, Tetsuo Matsui,
Phys. Rev. A 94, 063641(1) - 063641(22) (2016). (Selected in Physical Review A Kaleidoscope)
8. Phase diagrams of Bose-Hubbard model and Haldane-Bose-Hubbard model with complex hopping amplitudes
Yoshihito Kuno, Takashi Nakafuji, Ikuo Ichinose,
Phys. Rev. A 92, 063630 (2015).
7. Real time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms
Yoshihito Kuno, Kenichi Kasamatsu, Yoshiro Takahashi, Ikuo Ichinose, Tetsuo Matsui,
New J. Phys. 17, 063005 (2015).
6. Superfluidity and solid orders in two-component Bose gas with dipolar interactions in an optical lattice
Yoshihito Kuno, Keita Suzuki, Ikuo Ichinose,
Phys. Rev. A 90, 063620 (2014).
5. Random-field-induced order in bosonic t-J model
Yoshihito Kuno, Takamasa Mori, Ikuo Ichinose,
New J. Phys. 16 ,083030 (2014).
4. Superfluid, Supersolid and Checkerboard Solid in Two-Component Bosons in an Optical Lattice:
Study by Means of Gross-Pitaevskii Theory and Monte-Carlo Simulations
Yoshihito Kuno, Keita Suzuki, and Ikuo Ichinose,
J. Phys. Soc. Jpn. 83, 074501 (2014).
3. Effective field theory for two-species bosons in an optical lattice: Multiple order, the Nambu-Goldstone bosons, the Higgs mode and vortex lattice
Yoshihito Kuno, Keita Suzuki, and Ikuo Ichinose,
J. Phys. Soc. Jpn. 82, 124501 (2013).
2. Effective field theories for two-component repulsive bosons on lattice and their phase diagrams
Yoshihito Kuno, Keisuke Kataoka, and Ikuo Ichinose,
Phys. Rev. B 87, 014518 (2013).
1. Bosonic t-J Model in a stacked triangular lattice and its phase diagram
Keisuke Kataoka, Yoshihito Kuno, Ikuo Ichinose,
J. Phys. Soc. Jpn. 81 124502 (2012).
<old preprint>
・Two-component Bose gas trapped by harmonic and annular potentials: Supercurrent, vortex flow and instability of superfluidity by Rabi coupling
Hayato Ino, Yoshihito Kuno, Ikuo Ichinose,
arXiv:1503.08906 (2015).
・Crystal, Superfluids, Supersolid and Hetero-Structure in System of Two-Component Strongly-Correlated Bosons in a Cubic Optical Lattice
Ikuo Ichinose, Takumi Ishima, Naohiro Kobayashi, Yoshihito Kuno, arXiv:1112.5516 (2012).
・Some databases about my publications (although they exhibit different statistical results...):
inSPIRE:
Research Gate:
https://www.researchgate.net/scientific-contributions/2002154477_Yoshihito_Kuno
Scopus:
https://www.scopus.com/authid/detail.uri?authorId=55513599800