top of page

Please see arXiv prints (This is latest):

https://arxiv.org/search/cond-mat?searchtype=author&query=Kuno%2C+Y

 

Google scholar:

https://scholar.google.com/citations?user=PTAklukAAAAJ&hl=ja

Research map(Officially):

https://researchmap.jp/-yk_kuno

<preprint >

3. Emergence symmetry protected topological phase in spatially tuned measurement-only circuit

Yoshihito Kuno, Ikuo Ichinose

https://arxiv.org/abs/2212.13142 (2022).

1. Critical and many-body localized phases under disorders with power-law correlations

Takahiro Orito*, Yoshihito Kuno*, Ikuo Ichinose,  *equally contribution

https://arxiv.org/abs/2002.12575 (2020).

Peer-reviewed paper>

50. Topological pump of SU(Q) quantum chain and Diophantine equation
Yasuhiro Hatsugai, Yoshihito Kuno

https://arxiv.org/abs/2210.11646 (2022).

Accepted in Phys. Rev. B (2023)

49. Purification and scrambling in a chaotic Hamiltonian dynamics with measurements 

Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose

https://arxiv.org/abs/2209.08897

Accepted in Phys. Rev. B (2022)

48. Quantum information spreading in random spin chains with topological order
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. B 106 104204  (2022)

https://doi.org/10.1103/PhysRevB.106.104204

https://arxiv.org/abs/2205.03008

47. Information spreading and scrambling in disorder-free multiple-spin interacting models

Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose

Phys. Rev. A 106,  012435  (2022)

https://doi.org/10.1103/PhysRevA.106.012435

https://arxiv.org/abs/2203.16307

46. Localization and slow-thermalization in a cluster spin model

Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose

New J. Phys. 24 073019  (2022)

https://iopscience.iop.org/article/10.1088/1367-2630/ac7d01

https://arxiv.org/abs/2110.05970

45. Observation of bulk-edge correspondence in topological pumping based on a tunable electric circuit"

Kenichi Yatsugi, Tsuneya Yoshida, Tomonari Mizoguchi, Yoshihito Kuno, Hideo Iizuka, Yukihiro Tadokoro, and Yasuhiro Hatsugai 

Commun. Phys. 5, 180 (2022).

https://www.nature.com/articles/s42005-022-00957-5

44. Deformation of localized states and state transitions in interacting random-hopping fermions

Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. B 105, 094201 (2022)

https://doi.org/10.1103/PhysRevB.105.094201

https://arxiv.org/abs/2110.14410

43. Construction of interacting flat-band models by molecular-orbital representation: Correlation functions, energy gap, and entanglement

Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai

Progress of Theoretical and Experimental Physics   2022 2  (2022).

https://doi.org/10.1093/ptep/ptac015

42. Bulk-edge Correspondence in the Adiabatic Heuristic Principle

Koji Kudo, Yoshihito Kuno, Yasuhiro Hatsugai

Phys. Rev. B (Letter)   104   L241113   (2021)

https://arxiv.org/abs/2106.10459 (2021)

41. Topological pump and bulk-edge-correspondence in an extended Bose-Hubbard model
Yoshihito Kuno, Yasuhiro Hatsugai

Phys. Rev. B 104, 125146 (2021)

https://doi.org/10.1103/PhysRevB.104.125146

https://arxiv.org/abs/2107.09498 (2021)

40.  Interplay and competition between disorder and flat band in an interacting Creutz ladder
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. B 104, 094202 (2021)

DOI:https://doi.org/10.1103/PhysRevB.104.094202

https://arxiv.org/abs/2106.15385 (2021)

39.  Multiple quantum scar states and emergent slow-thermalization in the flat-band system
Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai

Phys. Rev. B 104, 085130 (2021)

https://doi.org/10.1103/PhysRevB.104.085130

https://arxiv.org/abs/2105.00926 (2021)

38. Flat band, spin-1 Dirac cone, and Hofstadter diagram in the fermionic square kagome model
Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai
Phys. Rev. B 104, 035161 (2021)

https://doi.org/10.1103/PhysRevB.104.035161

37. Plateau Transitions of Spin Pump and Bulk-Edge Correspondence
Yoshihito Kuno, Yasuhiro Hatsugai

Phys. Rev. B 104, 045113  (2021)

https://doi.org/10.1103/PhysRevB.104.045113

https://arxiv.org/abs/2102.09325 (2021)

36. Square-root topological phase with time-reversal and particle-hole symmetry

Tsuneya Yoshida, Tomonari Mizoguchi, Yoshihito Kuno, and Yasuhiro Hatsugai

Phys. Rev. B 103, 235130 (2021) 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.235130

35. Flat-band full localization and symmetry-protected topological phase on bilayer lattice systems

Ikuo Ichinose, Takahiro Orito, Yoshihito Kuno

Phys. Rev. B 103, 184113  (2021)

URL: https://link.aps.org/doi/10.1103/PhysRevB.103.184113
DOI: 10.1103/PhysRevB.103.184113

https://arxiv.org/abs/2102.10986 (2021)

 

34. Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms
Shuta Nakajima, Nobuyuki Takei, Keita Sakuma, Yoshihito Kuno, Pasquale Marra, Yoshiro Takahashi

Nature Physics (2021).

https://doi.org/10.1038/s41567-021-01229-9

33. Non-thermalized Dynamics of Flat-Band Many-Body Localization
Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. B 103, L060301 (Letter) (2021)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.L060301

https://arxiv.org/abs/2012.13659 (2020)

32. Detecting Bulk Topology of Quadrupolar Phase from Quench Dynamics
Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai

Phys. Rev. Lett. 126, 016802 (2021)

https://doi.org/10.1103/PhysRevLett.126.016802

https://arxiv.org/abs/2008.01924 (2020)

31. Flat Band Quantum Scar

Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai

Phys. Rev. B 102, 241115 (R) (2020).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.241115

https://arxiv.org/abs/2010.02044 (2020)

30. Interaction induced doublons and embedded topological subspace in a complete flat-band system
Yoshihito Kuno, Tomonari Mizoguchi, Yasuhiro Hatsugai
Phys. Rev. A 102, 063325 (2020).

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.063325

https://arxiv.org/abs/2009.08134 (2020)

29. Interaction Induced Topological Charge Pump

Yoshihito Kuno, Yasuhiro Hatsugai

Phys. Rev. Research 2, 042024 (Rapid Communication) (2020)

https://doi.org/10.1103/PhysRevResearch.2.042024

https://arxiv.org/abs/2007.11215 (2020)

28. PT-symmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation

Yosuke Takasu, Tomoya Yagami, Yuto Ashida, Ryusuke Hamazaki, Yoshihito Kuno, Yoshiro Takahashi

Progress of Theoretical and Experimental Physics/ptaa094 (2020).

https://doi.org/10.1093/ptep/ptaa094

https://arxiv.org/abs/2004.05734

27. Square-root higher-order topological insulator on a decorated honeycomb lattice

Tomonari Mizoguchi, Yoshihito Kuno, Yasuhiro Hatsugai
Phys. Rev. A 102, 033527 (2020).

https://doi.org/10.1103/PhysRevA.102.033527

https://arxiv.org/abs/2004.03235

26. Exact projector Hamiltonian, local integrals of motion, and many-body localization with topological order

Takahiro Orito*, Yoshihito Kuno*, Ikuo Ichinose, *equally contribution

Phys. Rev. B 101, 224308 (2020).

https://link.aps.org/doi/10.1103/PhysRevB.101.224308

https://arxiv.org/abs/2004.07634 (2020).

25. Extended flat-bands, entanglement and topological properties in a Creutz ladder,

Yoshihito Kuno

Phys. Rev. B 101, 184112 (2020).

https://doi.org/10.1103/PhysRevB.101.184112

https://arxiv.org/abs/2001.10813 (2020).

24. Flat-band many-body localization and ergodicity breaking in the Creutz ladder

Yoshihito Kuno*Takahiro Orito*Ikuo Ichinose, *equally contribution

New J. Phys. 22 013032​ (2020).

https://doi.org/10.1088/1367-2630/ab6352

https://arxiv.org/abs/1904.03463 (2019)

23. Topological order vs. many-body localization in periodically modulated spin chains

Takahiro Orito, Yoshihito Kuno, Ikuo Ichinose

https://arxiv.org/abs/1909.13457

Phys. Rev. B 100, 214202 (2019)

https://doi.org/10.1103/PhysRevB.100.214202

22. Many-body-localization induced protection of symmetry-protected topological order in a XXZ spin model
Yoshihito Kuno

https://arxiv.org/abs/1908.00297 (2019)

Phys. Rev. Research 1, 032026  Rapid Communication

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.032026

21. Disorder-induced Chern insulator in Harper-Hofstadter-Hatsugai model

Yoshihito Kuno

Phys. Rev. B 100, 054108 (2019).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.054108

20. Non-adiabatic extension of the Zak phase and charge pumping in the Rice-Mele model
Yoshihito Kuno

Eur. Phys. J. B (2019) 92: 195
https://doi.org/10.1140/epjb/e2019-100131-1

19. Glassy Dynamics from Quark Confinement: Atomic Quantum Simulation of Gauge-Higgs Model on Lattice

Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. A 100, 013629 (2019)

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.013629

https://arxiv.org/abs/1903.07297

18. Phase structure of the interacting Su-Schrieffer-Heeger model and the relationship with the Gross-Neveu model on lattice
Yoshihito Kuno

Phys. Rev. B 99, 064105 (2019).

https://link.aps.org/doi/10.1103/PhysRevB.99.064105
DOI: 10.1103/PhysRevB.99.064105

https://arxiv.org/abs/1811.01487

17. Out-of-equilibrium dynamics of multiple second-order quantum phase transitions in extended Bose-Hubbard model: Superfluid, supersolid and density wave

Keita Shimizu, Takahiro Hirano, Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose

Phys. Rev. A 98, 063603 (2018), (Selected in Physical Review A Kaleidoscope)

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.063603

https://arxiv.org/abs/1805.05042 (2018)

16. Dynamics of first-order quantum phase transitions in extended Bose-Hubbard model: From density wave to superfluid and vice-versa

Keita Shimizu, Takahiro Hirano, Jonghoon Park, Yoshihito Kuno, Ikuo Ichinose,

New J. Phys. 20 083006 (2018)

http://iopscience.iop.org/article/10.1088/1367-2630/aad5f9/meta

https://arxiv.org/abs/1803.02548 (2018)

15. Generalized lattice Wilson-Dirac fermions in (1+1) dimensions for atomic quantum simulation and topological phases

Yoshihito Kuno, Ikuo Ichinose, Yoshiro Takahashi

Scientific Reports 8, 10699 (2018)

https://www.nature.com/articles/s41598-018-29143-w

https://arxiv.org/abs/1801.00439

14. Dynamics of a quantum phase transition in the Bose-Hubbard model: Kibble-Zurek mechanism and beyond

Keita ShimizuYoshihito KunoTakahiro HiranoIkuo Ichinose

Phys. Rev. A 97, 033626 (2018),(Selected in Physical Review A Kaleidoscope)

10.1103/PhysRevA.97.033626

13. Various Topological Mott insulators in strongly-interacting boson system in one-dimensional superlattice

Yoshihito Kuno, Keita Shimizu, Ikuo Ichinose

New J. Phys.19 123025 (2017).

10.1088/1367-2630/aa99d0

12. Quantum simulation of (1+1) -dimensional U(1) gauge-Higgs model on a lattice by cold Bose gases

Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, Tetsuo Matsui

Phys. Rev. D 95 ( 9 ) 094507 (2017). (Selected in Physical Review D Kaleidoscope)

10.1103/PhysRevD.95.094507

11. Phase diagrams of extended Bose-Hubbard model in one dimension by Monte-Carlo simulation with stochastic-series expansion

Keima Kawaki, Yoshihito Kuno, Ikuo Ichinose,

Phys. Rev. B 95, 195101 (2017).

https://arxiv.org/abs/1701.00613

10.1103/PhysRevB.95.195101

10. Bosonic Analogs of Fractional Quantum Hall State in the Vicinity of Mott States,

Yoshihito Kuno, Keita Shimizu, Ikuo Ichinose, 

Phys. Rev. A 95, 013607(1) - 013607(13) (2017).

10.1103/PhysRevA.95.013607

9. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model

Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, Tetsuo Matsui,

Phys. Rev. A 94, 063641(1) - 063641(22) (2016). (Selected in Physical Review A Kaleidoscope)

10.1103/PhysRevA.94.063641

8. Phase diagrams of Bose-Hubbard model and Haldane-Bose-Hubbard model with complex hopping amplitudes

Yoshihito Kuno, Takashi Nakafuji, Ikuo Ichinose,

Phys. Rev. A 92, 063630 (2015).

7. Real time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms

Yoshihito Kuno, Kenichi Kasamatsu, Yoshiro Takahashi, Ikuo Ichinose, Tetsuo Matsui,

New J. Phys. 17, 063005 (2015).

10.1088/1367-2630/17/6/063005

6. Superfluidity and solid orders in two-component Bose gas with dipolar interactions in an optical lattice

Yoshihito Kuno, Keita Suzuki, Ikuo Ichinose,

Phys. Rev. A 90, 063620 (2014).

5. Random-field-induced order in bosonic t-J model

Yoshihito Kuno, Takamasa Mori, Ikuo Ichinose,

New J. Phys. 16 ,083030 (2014).

4. Superfluid, Supersolid and Checkerboard Solid in Two-Component Bosons in an Optical Lattice:

Study by Means of Gross-Pitaevskii Theory and Monte-Carlo Simulations

Yoshihito Kuno, Keita Suzuki, and Ikuo Ichinose,

J. Phys. Soc. Jpn. 83, 074501 (2014).

3. Effective field theory for two-species bosons in an optical lattice: Multiple order, the Nambu-Goldstone bosons, the Higgs mode and vortex lattice

Yoshihito Kuno, Keita Suzuki, and Ikuo Ichinose,

J. Phys. Soc. Jpn. 82, 124501 (2013).

2. Effective field theories for two-component repulsive bosons on lattice and their phase diagrams

Yoshihito Kuno, Keisuke Kataoka, and Ikuo Ichinose,

Phys. Rev. B 87, 014518 (2013).

1. Bosonic t-J Model in a stacked triangular lattice and its phase diagram

Keisuke Kataoka, Yoshihito Kuno, Ikuo Ichinose,

J. Phys. Soc. Jpn. 81 124502 (2012).

<old preprint>

・Two-component Bose gas trapped by harmonic and annular potentials: Supercurrent, vortex flow and instability of superfluidity by Rabi coupling

Hayato Ino, Yoshihito Kuno, Ikuo Ichinose,

arXiv:1503.08906 (2015).

・Crystal, Superfluids, Supersolid and Hetero-Structure in System of Two-Component Strongly-Correlated Bosons in a Cubic Optical Lattice

Ikuo Ichinose, Takumi Ishima, Naohiro Kobayashi, Yoshihito Kuno, arXiv:1112.5516 (2012).

・Some databases about my publications (although they exhibit different statistical results...):

inSPIRE:

http://inspirehep.net/search?ln=ja&ln=ja&p=Kuno%2C+Yoshihito&of=hb&action_search=%E6%A4%9C%E7%B4%A2&sf=&so=d&rm=citation&rg=25&sc=0

Research Gate:

https://www.researchgate.net/scientific-contributions/2002154477_Yoshihito_Kuno

Scopus:

https://www.scopus.com/authid/detail.uri?authorId=55513599800

bottom of page